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Periodic flows through curved tubes: the effect of 
the frequency parameter 
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In a previous paper we reported on the effect of Dean number, K,, on the fully 
developed region of periodic flows through curved tubes. In this paper we again 
consider a sinusoidally varying volumetric flow rate in a curved pipe of arbitrary 
curvature ratio, 6, and investigate the effect of frequency parameter a, and Reynolds 
number Re, on the flow. Specifically, we report on the flow-field development for the 
range 7.5 < a < 25, and 50 <Re,,, < 450. The results, obtained by numerical 
integration of the full Navier-Stokes equations, reveal a number of characteristics of 
the flow previously unreported. For low values of Re, the secondary flow consists of 
a single vortex (Dean-type motion) in the half-cross-section at all times and for all 
values of a studied. For higher Re, we observe inward ‘centrifuging’ (Lyne-type 
motion) at the centre. This motion always occurs during the accelerating period of 
the volumetric flow rate. It appears at lower a for higher Re, and, for the given Re,,, 
at  which it appears, it occurs a t  earlier times in the cycle for lower a. A striking 
feature is observed for a = 15 for the range 315 <Re,  < 400: period tripling. The 
flow field varies periodically with time for the duration of three volumetric-flow-rate 
cycles then repeats for the subsequent three cycles, and so on. The computed axial 
pressure gradient also varies periodically with time but with the same period as the 
volumetric flow rate. 

1. Introduction 
Curved-pipe flows were first studied by Dean (1927, 1928). Owing to their richness 

in physical phenomena and their occurrence in a wide spectrum of applications there 
exists now a large literature on such flows, both steady and unsteady. For a 
comprehensive review of flows through curved pipes the reader may consult Berger, 
Talbot & Yao (1983), It6 (1987) and Nandakumar & Masliyah (1986). 

The motivation for the present work has been its physiological application, in 
particular to the flow of blood through the aortic arch. Studies, both theoretical and 
experimental, of flow in curved pipes have yielded much information helpful in 
understanding the flow in the aorta, for example that the flow in the aorta is 
normally laminar, in part, because curvature stabilizes the flow and, therefore, 
delays transition to turbulence. Nevertheless, many questions regarding the nature 
of the flow in the aorta and its implications still remain. Particularly interesting is 
whether there are regions in the aorta where curvature is likely to enhance the 
development of atherosclerotic plaques. In the recent past two competing theories 
have confronted each other with opposing evidence regarding the initiation of 
atherosclerosis (Caro, Fitz-Gerald & Schroter 1971; and Fry 1968, 1973). These 
theories have one feature in common - they relate the shear stress on the wall to the 
pathological cause of atherosclerosis. Caro et al. claim that deposits occur in areas of 
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low wall shear, the result of low mass diffusion of cholesterol away from the artery 
wall in which i t  is produced, while Fry suggests that  they occur in areas of maximum 
wall shear, owing to mechanical damage to the vessel walls. (For an extensive review 
of the role of fluid mechanics in atherogenesis the reader is referred to Nerem 1981 
and Schettler et al. 1983.) More recent studies (Friedman et al. 1981 ; Ku et nl. 1985), 
which have compared measurements in in-vitro scale models of the human 
circulatory system with human physiological and anatomical data, have shown 
intimal plaque thickening to be greatest in regions of low, rather than high, shear 
stress. Moreover, these studies have shown that oscillations in the direction of the 
wall shear, such as occur in pulsatile flow, are correlated with enhanced plaque 
formation. These authors conclude that low mean shear stress and marked 
oscillations in the direction of wall shear stress may be critical factors in 
atherogenesis. (Although these studies were carried out in models of arterial 
bifurcations with straight parent and daughter vessels, the pulsatile flow created 
helical streamlines reminiscent of flows in curved tubes.) 

In the current study we impose a volumetric flow rate of the form 

&*(ot*) = & $ c + & : c ~ ~ s ( w t * + ~ ) .  

The asterisk denotes dimensional quantities. When we non-dimensionalize using 
Q:c, the flow rate takes the form 

&(t) = l+ycos( t+n) .  (1.1) 

We seek a flow field, in the fully developed region of the pipe, which is consistent with 
this volumetric flow rate. The ‘fully developed’ characterization is meant in the 
sense that the flow is periodic in time a t  any cross-section, and independent of axial 
position. Our problem, therefore, is two-dimensional, but all three velocity 
components are non-zero. Consequently, all three momentum equations need to be 
solved. 

The fluid is assumed to be incompressible and Newtonian and the flow laminar. 

2. Mathematical and numerical formulations 
The mathematical formulation and the numerical procedures are the same as 

reported by Hamakiotes BE Berger (1988), and therefore we omit them here. We limit 
ourselves to displaying the governing equations of motion in conservative, 
dimensionless form, for momentum and mass, in a toroidal coordinate system 
(figure I ) :  

(w sin $ - u cos $)}, (2.1) 
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FIGURE 1. Toroidal coordinate system. 

a 8 ap 
(TBUW) +- (Bvw) + Srw (u cos q5 - v sin 9) = -- - a9 ] Ba6’ 

+ Re, 2 { rB [A ar (rB 2) + $ E$)] - g}, (2.3) 

where 6 = a /R  and B = 1 + Sr cos 4. Rem is the mean Reynolds number, defined as 
Re, = aW,/v; St, is the mean Strouhal number, defined as St, = aw/W,; and a is 
the frequency parameter, defined as a = a(w/v)i, which is also equal to (Re,St,)i. 

The dimensionless variables appearing above have been defined as follows : 

where the asterisk indicates dimensional quantities, r is the position vector, ,u is the 
coefficient of viscosity, v is the kinematic viscosity, p is the density, V is the velocity 
vector, P is the pressure, t is the time, r is the viscous-stress tensor and W, = 
&&+a2. The reference velocity W, corresponds to the volumetric flow rate Q& 
pumped through a cross-sectional area 7ca2, and can be alternatively viewed as the 
time-mean value of the axial velocity. Here, a is the radius of the pipe (figure 1). 

Periodic flows through curved pipes are characterized by three parameters : the 
frequency parameter a, the amplitude ratio y (see (l.l)), and the mean Dean number 
K,. Their physical interpretation is discussed in Lyne (1971) and in Hamakiotes & 
Berger (1988). The definitions of these and other parameters are listed in table I .  

The assumed boundary conditions are : no-slip a t  the wall ; symmetry across the 
centreplane ; fully developed flow. 

To solve the system (2.1)-(2.4) we use Chorin’s (1968) Projection Method. The 
numerioal details and finite-difference discretization can be found in Hamakiotes & 
Berger (1988). 
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Name Definition 

Curvature ratio 8 = a/R 
Amplitude ratio Y = Q X c / Q k  
Mean axial velocity 

Mean Btrouhal number 

Wrn = &$/nu2 
oa 

St, = - 
w m  

W a  Re =L Mean Reynolds number rn v 

Mean Dean number 

Wma -Rema Secondary Reynolds number 

Frequency parameter 

Re, = - - ~ 

Rov , St, 
a = a(o/v)s = (StrnRe,)t 

TABLE 1. Definitions of important parameters 

3. Results and discussion 
3.1. Preliminaries 

To validate our code we first reproduced Gong’s (1979) results. The results of our 
simulation are presented in Hamakiotcs (1988). Excellent agreement is observed. 
Further, to test the consistency of the code we reproduced Gong’s results using 
different meshes and different time steps. We experimented with 240 and 330 time 
steps in the cycle with very little or no change in the results. So most of our results 
were obtained with 240 time steps per cycle, except those for small 01 which required 
a larger number of time steps -typically 400. For the spatial discretization we used 
two non-uniform staggered meshes, 14 x 19 and 16 x 21, and three uniform staggered 
meshes, 19 x 19,21 x 21 and 23 x 23, on the half-cross-section. From the 14 x 19 to the 
21 x 21 mesh very little change was observed in the flow field. The differences were 
larger in the shear stress because derivatives accentuate errors. Between the 21 x 21 
and 23 x 23 meshes the change in the shear stress was less than 1 %, whereas more 
than a three-fold increase in time was required for the latter mesh compared to the 
former. 

and the 
numerically computed volumetric flow rate was calculated to be within less than 
2 x of its analytic value. Owing to the iterative nature of our algorithm, 
integration of the equations must be carried out for a number of cycles until 
periodicity of the results is achieved. Typically, fifteen cycles were required for 
periodicity. A significant improvement in the rate of convergence occurred if the 
calculations started a t  the beginning, or shortly thereafter, of the accelerative part 
of the volumetric flow rate. Figure 2 shows the dimensionless volumetric flow rate. 
We started the calculations a t  the minimum of the flow rate. Another significant 
improvement was observed if we did not allow the minimum of the volumetric flow 
rate to ever become exactly zero. The number of cycles required for convergence was 
found to increase with increasing frequency parameter and Reynolds number. 

I n  our simulations we used y = 0.98 and 6 = 4, although the equations, (2.1)-(2.4), 
and the numerical formulation we use are valid for any value of S. We report here our 
results for the ranges 7.5 < 01 < 25 and 50 <Re,  < 450. A complete list of all the 

Upon convergence the divergence of the velocity was less than 
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FIQUFLE 2. Volumetric flow rate : Q = $[ 1 + 0.98 cos (t + s)]. 

parameter values studied is given in table 2. For reasons of economy of space we 
present only a small portion of these results. 

We discuss the flow-field development for Re,  = 375 and a = 7.5,lO and 15. The 
results are shown in figures 3-13. Figure 3 shows for all the cases the numerically 
computed axial pressure gradient (with its algebraic sign) for the imposed volumetric 
flow rate of figure 2. If we take the algebraic sign into consideration we conclude that, 
consistent with previous investigations, the driving axial pressure gradient (i.e. the 
negative of part (a) of all figures) leads the volumetric flow rate by approximately 
90". 

The six parts, (a-f) ,  of figures 4 , 6 , 8 ,  10, and 12 exhibit the flow-field development 
at  various times in the cycle. Owing to the assumed symmetry across the centreplane, 
on the upper half of the cross-section we have plotted the secondary-velocity vectors, 
and on the lower half the axial isovelocity contours. The inner bend is located at the 
left-hand side of each of these figures, and the outer bend at the right-hand side. To 
keep the secondary-velocity vectors reasonably sized and so that they do not extend 
beyond the cross-sectional boundary, they are multiplied by a scaling factor, A, 
which in this case has the value 0.5. In each of these figures we have plotted a vector 
which extends from the centre outwards, rightward, along the centreline. A vector 
of length equal to this vector would correspond to a secondary velocity of magnitude 
A,  so in this case, for example, a vector of length equal to half the length of the radius 
of the pipe would have magnitude equal to 0.5. All figures refer to dimensionless 
quantities. 

Figures 5, 7, 9, 11, and 13 show the circumferential and axial components of the 
shear stress for the different flow cases. 
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Bern 
50 
50 
50 
50 

150 
150 
150 
150 
250 
250 
250 
250 
250 
300 
300 
300 
315 
325 
350 
350 
350 
350 
375 
375 
375 
400 
400 
400 
450 

Km 

37.796 
37.796 
37.796 
37.796 

113.39 
113.39 
113.39 
113.39 
188.98 
188.98 
188.98 
188.98 
188.98 
226.78 
226.78 
226.78 
238.12 
245.68 
264.58 
264.58 
264.58 
264.58 
283.47 
283.47 
283.47 
302.37 
302.37 
302.37 
340.17 

a 

7.50 
10.0 
15.0 
20.0 

10.0 
15.0 
20.0 

10.0 
13.0 
15.0 
25.0 

10.0 
15.0 
15.0* 
15.0* 
7.50 

10.0 
15.0* 
25.0 
7.50 

10.0 
15.0* 
10.0 
15.0* 
25.0 
10.0 

7.50 

7.50 

7.50 

Ntrn 
1.1250 
2.0000 
4.5000 
8.0000 
0.3750 
0.6667 
1.5000 
2.6667 
0.2250 
0.4000 
0.6760 
0.9OoO 
2.5000 
0.1875 
0.3333 
0.7500 
0.7143 
0.6923 
0.1607 
0.2857 
0.6429 
1.7857 
0.1500 
0.2667 
0.6000 
0.2500 
0.5625 
1.5625 
0.2222 

Re, 
6.3492 
3.5714 
t 3873 
0.8929 

57.143 
32.143 
14.286 
8.0357 

158.73 
89.286 
52.832 
39.683 
14.286 

228.57 
128.57 
57.143 
63.000 
67.063 

311.11 
175.00 
77.778 
28.000 

357.14 
200.89 

228.57 
101.59 

289.29 

89.286 

36.570 

TABLE 2. Range of parameters investigated. S = 3, y = 0.98. * Indicates period tripling 

3.2. Flow-&ld and shear-stress development 
We start with the flow-field development over the cycle for a = 7.5, Re, = 375, and 
a = 10, Re, = 375. The results are shown in figures 3-7. Figure 3 shows the 
numerically computed axial pressure gradient necessary to sustain the volumetric 
flow rate of figure 2. As discussed in $3.1, this pressure gradient, and those which 
follow, are plotted with their algebraic sign. It is important to notice that all 
computed axial pressure gradients are periodic with time and have a phase difference 
of approximately 90° from the volumetric flow rate. Looking at  the results presented 
here for a = 7.5, 10, 15 and Re, = 375 and at  the remainder of the results we have 
obtained, we conclude that the amplitude of the axial pressure gradient decreases 
with increasing Reynolds number, as expected, but increases with increasing 
frequency parameter keeping Re, constant. 

Regions of reverse axial flow are observed at the beginning and end of the 
volumetric-flow-rate cycle, i.e. at the end of the decelerative part and at  the 
beginning of the accelerative part of the cycle. Such regions are seen in parts ( e )  and 
(f) of all the figures. These figures show that when the extent of the reverse axial flow 
region is a t  its maximum, (part f of all the figures), it occupies the inner part of the 
cross-section. From part ( e )  of all the figures we can infer that such reversal of the 
flow is initiated at the very inner point of the cross-section. Part (a)  of all the figures 
shows the end of reversed axial flow. A t  this point we have a region around the centre 
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FIGURE 3. Calculated axial pressure gradient for Re,,, = 375. -, CY = 7.5; --, CY = 10; 
-__ , CY = 15, cycles 1 ,  2, and 3. 

of the pipe, or alternatively the most central part of the core, consisting of fluid 
moving upstream, whereas the surrounding fluid moves downstream. From figures 
4(a) and 6(a) we conclude that the fluid which moves upstream at the end of the 
period of reversed axial flow, i.e. at  t = in, occupies a larger portion of the core for 
larger values of the frequency parameter. 

During the decelerative part of the volumetric flow rate, i.e. parts (d-f) ,  the axial 
flow consists of a boundary layer and an inviscid core. 

At  t = in, i.e. part (a) of figures 4 and 6, the secondary flow consists of a single 
vortex located inwards. At  a time in later, i.e. t = in, figures 4(b)  and 6(b )  show that 
Lyne-type motion (i.e. inward secondary motion at  the centre) has occurred for a = 
7.5, while for a = 10 there are signs of inward motion on the outer side of the centre, 
and at the inner bend. This Lyne-type motion does not last very long. At  t = in, 
figure 4(c) shows that the secondary flow has returned to a Dean-type motion (i.e. 
one vortex on the half-cross-section) and that it is much stronger than at  earlier 
times. Figure S ( c )  shows that at higher a the inward motion at the outer bend 
persists, giving rise to practically two vortices: one on the outer bend and one at 
$ = in. For the remainder of the cycle, i.e. x < t < 2x, the secondary flow for a = 7.5 
consists of one vortex. On the other hand, the secondary flow for a = 10 shows a 
single vortex at t = x (figure 6 d ) ;  a multiple-vortex structure at  t = %x (not shown) 
with a small vortex a t  the centre and one at  the inner bend which persists until 
t = in; and a single vortex, once again at  the end of the cycle. 

The shear-stress plots, figures 5 and 7, show that the circumferential component, 
rr+, contributes almost as much as two-thirds of the axial component, rr0, to the net 
shear. These figures also show the location of maximum rr+ oscillating back and forth 
between the inner and outer bend but with very small amplitude, around q5 = ix. 
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FIGURE 5. Circumferential and axia1 shear stresses for a = 7.5, Re,,, = 375. Symbols for times 
plotted: 0 ,  in; O,@; 0,  in; a, R ;  +, tn; 0,  &; A, in; X ,  2n. 

Signs of separation of the secondary flow, demonstrated by negative shear, are more 
dramatic for a = 10. One point worthy of note is that  whenever such separation is 
observed, i t  always occurs a t  the inner bend. The maximum rr4 occurs in both cases, 
u = 7.5 and a = 10, a t  t = x, and the minimum at  t = ax. 

The plots of axial shear stress in figures 5 and 7 show clearly evidence of reverse 
flow and demonstrate how this region moves more inwardly at lower u. The 
maximum shear is located a t  the outer bend and occurs a t  t = n. 

For a = 15 and 315 <Re,,, < 400 we find a striking feature -the velocity field 
varies periodically with time but with a period of three volumetric-flow-rate cycles, 
i.e. the results for the velocity field exhibit the phenomenon of period tripling. The 
computed axial pressure gradient, on the other hand, does not exhibit such 
behaviour, i3Plae varies periodically with time but with period one, As an 
illustration of this phenomenon of period tripling, we exhibit our results for a = 15 
and Re,,, = 375 in figures 8-13. The calculated axial pressure gradient is identical for 
all three cycles, and shown in figure 3. 

At t = an, figures 8 (a ) ,  10 (a )  and 12 ( a )  show some differences between the three 
velocity profiles. At this point most differences, with regard to both the secondary 
and axial velocity fields, are located on the. outer half of the cross-section. The inner 
half consists primarily of a single vortex. At t = $x we observe some separation of the 
secondary flow a t  the inner bend, while most differences still lie on the outer half of 
the cross-section. 

The differences between the three profiles start to become pronounced at t = in 
(figures 8c, lOc, 12c) ,  and afterwards. At t = gx the secondary flow at  the inner and 
outer bends oscillates between inward and outward flow. This oscillation continues 
to cover almost the entire centreplane at t = x. In fact, a t  this time the secondary flow 
at the centre oscillates between Lyne-type (figure 8 d )  and outward flow (figure 1 2 4 .  
The same oscillations and complex, multiple vortex structures continue for most of 
the cycle. Though two of the profiles have returned to almost a single vortex located 
at the inner bend a t  t = ax and t = 2x (see e.g. figures lOf and 128, the profile of the 
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FIGURE 7. Circumferential and axial shear stresses for a = 10, Re,,, = 375. For the legend see 
figure 5 caption. 

first cycle (figure 8 8  develops into two counter-rotating vortices on the half-cross- 
section. But at  the same time a reversed-flow region has appeared at the inner bend. 
The combination of these two motions in the three-dimensional space would result 
in helical motion upstream, in the inner half of the cross-section, and helical motion 
downstream at the outer half, as is evident from figure Sf. 

Oscillations can also be observed in the shear-stress curves. Figures 9, 11,  and 13 
show the circumferential and axial components of shear stress, respectively, for all 
three cycles. The maximum of 7,.# occurs at  t = in for all three cycles, and the 
maximum of 77s at t = 3. This is in contrast to the results for smaller a which showed 
the maxima of both 7r6 and 7,e to occur at t = n. Another point of interest is the 
existence of multiple peaks and valleys in the 7r9 plots. This is indicative of complex 
vortical structures with multiple vortices, which is consistent with the flow-field- 
development figures. 

Discussion of a more complete set of results is given in Hamakiotes (1988). 

4. Conclusions 
The fully developed region of periodic flows through curved tubes has been 

simulated numerically and the results analysed and discussed. A sinusoidally varying 
volumetric flow rate was imposed and a solution sought of the flow field consistent 
with this flow rate. The effects of Reynolds number and frequency parameter have 
been investigated extensively in the ranges 50 <Re,,, < 450 and 7.5 < ct < 25. All 
results were obtained for the values of curvature ratio and amplitude ratio, 6 = $ and 
y = 0.98, respectively. To check the validity and consistency of our code we have 
reproduced Gong's (1979) results (the detailed comparisons can be found in 
Hamakiotes 1988). The agreement is very good. The principal conclusions, drawn 
primarily from the results presented and described in this paper, can be summarized 
as follows: 

(i) The amplitude of the axial pressure gradient decreases with increasing 
Reynolds number, and increases with increasing frequency parameter. 
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FIGURE 9. Circumferential and axial shear stresses for a = 15, Re, = 375, cycle 1 .  For the 
legend Bee figure 5 caption. 

(ii) The axial flow is reversed for an < t < b. This reversed flow starts at t = in and 
is initiated a t  the inner bend. It occupies the region of maximum extent a t  t = 2n. 
It is last seen a t  t = 3 around the centre. At this last time, i.e. a t  the end of the 
reversed axial flow duration, there is a portion around the centre which moves 
upstream (reversed-flow region), while the surrounding fluid moves downstream. 
This area of reverse axial flow a t  the core occupies a larger portion of the cross- 
section for larger values of a. 

(iii) During the decelerative portion of the volumetric flow rate the axial flow 
consists of a boundary layer and an inviscid core. 

(iv) Lyne-type motion, i.e. inward flow a t  the centre, occurs during the 
accelerative part of the flow rate. It occurs a t  lower a for higher Re,,,, and a t  earlier 
times in the cycle for lower a. 

(v) The maximum circumferential and axial shears occur at t = n: for a = 7.5 and 
a = 10. For higher a, the maximum T,.$ occurs a t  t = in:, and the maximum rrs occurs 
at t = in:. 

(vi) Perhaps the most fascinating feature occurs for a = 15 and 315 < Re, < 400: 
period tripling. The computed axial pressure gradient varies periodically with time 
for each cycle with period that of the volumetric flow rate. The computed velocity 
field is found to vary also periodically with time, but with a duration of three cycles, 
i.e. with a period three times that of &(t).  This feature includes oscillation between 
inward- and outward-directed secondary flow along the centreplane, complex 
vortical structures, and oscillation upstream and downstream of parts of the cross- 
sectional fluid in helical fashion. 

The above results are especially important because of the recent studies (Friedman 
et al. 1981 ; Ku et al. 1985) relating arterial wall shear stress to human atherogenesis, 
in particular, the finding that intimal thickening and plaque formation were most 
likely to occur in regions where the wall shears were low and oscillated rapidly. There 
is some evidence (Ku et al. 1985) that there may even be a threshold value of shear- 
stress magnitude for plaque development. 
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FIUURE 11. Circumferential and axial shear stresses for a = 15, Re,,, = 375, cycle 2. For the 
legend see figure 5 caption. 

A word of caution is in order regarding the assumed symmetry boundary 
condition. Relatively recent studies by Winters (1984) and Winters & Brindley 
(1984) suggest caution when imposing this condition because of the existence of 
asymmetric solutions arising from symmetry-breaking bifurcation points. They also 
find almost all multiple solutions to  be unstable with respect to either symmetric or 
asymmetric perturbations. But even with the symmetry condition imposed Yang & 
Keller (1986), Dennis & Ng (1982), and Nandakumar & Masliyah (1982) all report the 
existence of multiple solutions. It must be pointed out, however, that all 
aforementioned studies treated only steady flows. 

In  closing, we would like to say a further word on period tripling, and, more 
generally, the generation in a flow of higher multiples of the basic period. Such effects 
are known to exist in nonlinear dynamical systems, as has been reported by 
Feigenbaum, Kadanoff & Shenker (1982), Wersinger, Finn & Ott (1980), Jose et al. 
(1977), and many others (Guckenheimer & Holmes 1983). Their existence in fluid 
dynamics has also been confirmed by Libchaber & Maurer (1982) and others. (See, for 
example, the collection of articles in Cvitanovid 1984.) This work has identified a 
number of routes by which nonlinear system9, in this case fluid flows, undergo 
transition to chaotic motions, which may be related to transition to turbulence 
(Gollub & Benson 1980; Lennie et al. 1988). One of the most explored of these routes 
is via period-doubling bifurcations as a controlling parameter takes on increasing 
values. In  addition to 2n-periods, or cycles, odd-period cycles, beginning with a 3- 
cycle, have also been observed in fluid mechanical systems (Libchaber & Maurer 
1982; Cvitanovid 1984). They may be related to ‘windows’ in period-doubling 
cascades ; these windows are ranges of the controlling parameter for which the system 
reverts back to a periodic motion from a more ‘chaotic’ state (Cvitanovid 1984). The 
period-tripling phenomenon uncovered here for a range of Re,,, may represent one of 
these windows. 

The existence of the phenomenon of period tripling in our results, along with the 
studies on multiplicity of solutions mentioned above (although they were all for 
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FIQURE 13. Circumferential and axial shear stresses for a = 15, Re,,, = 375, cycle 3. For the 
legend see figure 5 caption. 

steady flows and no direct conclusion can be drawn regarding their existence in 
unsteady fluid-dynamical systems), provide reason to study unsteady flows in a new 
light, considering them from the point of view of dynamical systems and their 
transition to  chaos and turbulence. The current state of theoretical understanding 
and our present results are too incomplete to provide definitive answers to such 
questions as whether the period tripling found here is the first sign on the road to 
chaos and transition for unsteady flows through curved pipes. In  the meanwhile, it  
is noteworthy that such flows are capable of period bifurcations which should be 
discernible by experiment. 
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